Identifying strategic voting in two-round elections

Áron Kiss

September 2012

Preliminary draft. Please do not cite without permission.

Abstract. This paper suggests a new method to analyze the most significant type of strategic voting behavior, the tendency of voters to try to avoid casting a 'wasted vote' for a candidate that has little chance of winning. Two-round elections, where the second round features three candidates, provide an ideal testing ground as the first round offers precise baseline measurement of the support for the third-place candidate. Estimations are conducted on 403 single-member districts from six general elections in Hungary. It is estimated in the main specification that if the race between the two leading candidates becomes closer by 10 percentage points in terms of first-round vote share, the number of votes the third-place candidate receives in the second round diminishes by about 14 percent. The effect is stronger in the 2010 election than in the first democratic elections of 1990 and 1994.

1. Introduction

Strategic voting occurs when an individual votes for an alternative that is not her most preferred one in the belief that this is a better way to achieve the best realistically possible outcome in the election. The most important type of strategic voting occurs when the voter faces a 'wasted-vote' situation. In such a situation the voter's most preferred alternative is perceived to have little chance of winning, while her second preference is viable against a dispreferred alternative. Strategic voting of this type has been empirically analyzed in many countries (see Cox, 1997, and the references therein) but it has been difficult thus far to find a setting where the empirical relationship between the extent of strategic voting and its two major determinants (the closeness of the race between the two leading candidates, on the one hand, and the viability of the third-place candidate on the other) can be precisely estimated. The present paper fills this gap by offering a methodology analyzing strategic voting in a single-member dual-ballot (two-round) election system.

Az election system with a number of single-member districts decided by a two-round procedure is ideal for the study of strategic voting if at least three candidates are allowed to qualify for the second round (runoff) election. In such a system the second-round performance of the candidate who received the third most votes in the first round can be directly compared to the first-round result. By observing a large number of districts with three-way races in the second-round, it becomes possible to statistically estimate how the second-round performance of the third-place candidate depends on the closeness of the race between the two leading candidates and the distance

* Opinions expressed are those of the author and do not reflect views of his institution. I would like to thank Gábor Simonovits for discussions. Any remaining errors or omissions are my responsibility.
+ Magyar Nemzeti Bank (Central Bank of Hungary), Szabadság tér 8-9, Budapest, 1054, Hungary. Email: kissa@mnb.hu.
of the third-place candidates from them. The advantage of the two-round setup is not only that the researcher has a good baseline to compare the second-round results with; it is also that the first-round results give excellent information to the voters themselves about the support of the candidates and, in particular, about the viability of the third-place candidate. In sum, dual-ballot systems have two advantages over single-ballot systems in the study of strategic voting. First, voters have better information about the support of candidates to inform their second-round voting decision. Second, by observing the first-round results, the researcher has a better measure of the first preferences of voters than in single-ballot systems.

Previous studies used several methodologies to test the presence of strategic voting and estimate its extent. The first methodology is based on survey questions directly asking voters about their most preferred candidate and their vote in an upcoming or recent election. A variant of this method asks voters about whether they would consider voting for a party different from their most preferred one in a hypothetical 'wasted-vote' situation. A 1997 survey of Hungarian voters with a hypothetical question design was analyzed by Duch and Palmer (2002) who found that 13.6 per cent of respondents would vote strategically in such a situation and concluded that "a sizeable percentage of citizens in nascent democracies respond strategically to a 'wasted-vote' situation". While the survey methodology is suitable to find out what percentage of the electorate cast a strategic vote in a particular election (or what percentage is open to the idea), and to analyze what individual characteristics make it more likely that an individual would do so, it is less suitable to investigate how the extent of strategic voting depends on the 'macro-determinants' of strategic voting: the closeness of the race and the viability of the third-place candidate.

The second and the third methodologies use, similarly to the present analysis, district-level data to identify strategic voting. Studies following a second methodology collect indirect evidence for the presence of strategic voting by testing the so-called 'bimodality hypothesis' (Cox 1997, pp. 85-89). The bimodality hypothesis departs from predictions of theoretical models of strategic voting: if the third-place candidate is relatively distant from the leading candidates, more voters are expected to desert him. If, on the other hand, the second and the third-place candidates are expected to draw almost equal support, the mechanism of strategic desertion is not likely to start in the first place. Thus the ratio of the total votes received by the 'second loser' to the votes received by the 'first loser' (the SF ratio) should be bimodal in a sample of single-member districts, with many observations near zero and many observations near one. While this method can provide powerful indirect evidence of the existence of strategic voting, it is also not suitable to answer the research questions posed in this paper.

The third methodology compares two separate votes cast in the same one-round election. This methodology was applied to the German election system where voters cast a vote for a party list and another one for a candidate in a single-member district (see Cox, 1997, pp. 81-83, and the references therein). Early studies comparing the vote totals received by the party list of the liberal FDP party and the votes its individual candidates received found that a large (and growing) proportion of FDP list voters deserted the party candidates through the years. Cox (1997, p. 82) notes however that this phenomenon is 'not unambiguous evidence for "ordinary" strategic voting'. He cites evidence that in some voters of the conservative CDU party cast their list votes for the FDP to prevent it from falling below the 5% national threshold (which would have harmed the changes of CDU to form a government). To collect evidence that is immune to this criticism he conducts a separate district-level analysis of the 1987 and 1990 German elections, in which he regresses the 'vote loss' of individual candidates of FDP and the Green Party, relative to the list votes for the same parties, on the difference between the vote share of the top two candidates in the same district ('margin'). He finds a small but statistically significant negative effect of the vote margin on the vote loss of small parties. The approach taken in the present study is similar to the district-level analysis of Cox on German elections, in that it is also based on the comparison of two
election results to each-other, but it has two advantages. First, as Cox notes (p. 83) in the German context, "[n]ot all of this effect is necessarily conventional strategic voting[...]." Some of it may be due to protest voting from major party voters: If the constituency result is a foregone conclusion, one can take the opportunity to send a pro-environment message to the major parties by voting for the Green candidate." This is especially so in the case of German individual constituencies since they often do not affect the number of seats parties win in the election.\(^1\) Second, when the researcher compares two simultaneous races, as it happens in the German case, the dependent and explanatory variables of the analysis are simultaneously determined which may cause a bias in the estimation. In the two-round election context the researcher explains phenomena observed in the second round by variables observed in the first round, thus it is immune to the simultaneity problem.

Finally, strategic voting has been investigated in experimental settings. Blais et al. (2011) analyze strategic voting in one and two-round elections in an experimental setting. In two-round elections, they focus on strategic voting in the first round (in their research design the top two candidates make it to the runoff election). While experimental settings are suitable to provide evidence for the existence of strategic voting in well-controlled environments, they are less suitable to investigate the relationship between strategic voting and its macro-determinants, as it is aimed in the present study.

Besides the literature on strategic voting, the paper is related to a small literature using two-round elections to investigate voting behavior. The effect of the closeness of the race on turnout has been investigated by Fauvelle-Aymar and Francois (2006) in French and by Simonovits (2012) in Hungarian elections, while Kiss and Simonovits (2012) tests for the existence of the so-called bandwagon effect in Hungarian elections.

The rest of the paper is organized as follows. The next section explains the hypotheses and the specifications: Section 3 describes the data. Results are presented from the 2010 election (Section 4) and from all six democratic elections from the period 1990-2010 (Section 5). A short summary concludes.

2. Hypotheses

The second-round voting decision of an individual whose most preferred candidate is in third place is influenced by a number of potentially conflicting motivations. The voter may just derive pleasure from voting for her first preference; or may, in view of future elections, want to signal to the parties and other voters that the support for the party is firm; or may think that the party has a non-zero chance of winning. On the other hand, the voter may abstain, demotivated by the expectation that her preferred party cannot win. Or, if she's not indifferent between the first and second place candidate, she may vote for her second preference based on the expectation that her vote may matter for the outcome.

Based on these considerations, we can formulate two hypotheses about the second-round performance of the candidate who received the third most number of votes in the first round (henceforth: candidate 3), relative to the first-round performance, as a function of the closeness of the race between the leading and the second-place candidate in the first round (henceforth: candidates 1 and 2).

Hypothesis 1 ("Strategic voting"): The second-round performance of candidate 3 is negatively affected by the closeness of the race between candidates 1 and 2.

\(^1\) For a discussion of this point, and the related Überhangsmandat issue, see the discussion of Cox (1997, p. 81).
Hypothesis 2 ('Making a mark'): The second-round performance of candidate 3 is negatively affected by his or her the distance from candidate 1.

The making-a-mark hypothesis is consistent with a number of underlying voter motivations, among them the 'chance-of-winning' and the 'long-term view' motivations described above. The main specification to test these two hypotheses is given as follows.

$$\log(votes3_{2}) = C + \gamma_0 \log(votes3_{1}) + \gamma_{12} \cdot DIFF_{12} + \gamma_{13} \cdot DIFF_{13}$$

Here, $votes3_{t}$ denotes the number of votes candidate 3 received in round t ($t = 1, 2$) of the election; $DIFF_{12}$ is the difference, in percentage points, between the first-round vote share of candidates 1 and 2; while $DIFF_{13}$ is the difference, in percentage points, between the first-round vote share of candidates 1 and 3. The Strategic Voting Hypothesis is equivalent with $\gamma_{12} > 0$; while the Making-a-Mark Hypothesis is equivalent with $\gamma_{13} < 0$. The log-specification means that estimated coefficients have to be interpreted as elasticities or semi-elasticities.

Two potential sources of bias are addressed to argue that this specification is not affected by them. Firstly: Can any other form of strategic voting bias the results? There is one main type of strategic voting that comes into question. This type of strategic voting may occur in the first round, aiming to manipulate which candidates make it into the runoff. While such behavior is compatible with game-theoretic equilibrium behavior, it requires such a high degree of coordination that it is not likely to be an important phenomenon in most cases (Cox 1997, p. 137). Even if it occurred in some cases, it is hard to see why its occurrence should be correlated with the closeness of the race for the first place, which is a necessary condition for this factor to cause a bias in this analysis.

Secondly: Can differential turnout in the second round bias the results? It could happen that supporters of candidates 1 and 2 turn out in greater numbers when the race is closer, while the turnout for candidate 3 is unaffected. This, however, would not bias the results since the estimated equation is written in terms of the (log) number of votes received by candidate 3, which is not affected by the turnout of other candidates' supporters.

This specification, indeed any possible specification relies on the notion that the behavior of voters across electoral districts can be compared. Therefore, a remark is in order about the heterogeneity of districts across space and time. Suppose there are two major parties in a multi-party system, A and B, and two minor parties, C and D. Suppose further that in all single-member districts candidates of party A and B are in the first and second place while the third-place candidate is C in some districts and D in others. Conceivably, voters of C and D will have a different mix of motivations, thus a different propensity to engage in strategic voting.

This paper deals with the heterogeneity by introducing 'race-type dummies' in the estimations, with a dummy each marking the districts belonging to the same 'race type'. Two contests belong to the same race type if they fulfill all of three conditions: they are from the same general election year, the third-place candidates in both districts are from the same party, and the first and second place candidates in both districts are from the same parties (but the order among the two leading candidates does not matter). Thus a race from the 1990 election with candidates from parties A-B-C in first, second and third place, respectively, is the same race type with another race from 1990 where the result was B-A-C, but it is a different race type from any race from the 1994 election, or from a race in 1990 with results A-D-C or A-B-D.
3. Context and Data

During the period of study, from the first democratic elections in 1990 to 2010, Hungarian elections were conducted under a mixed system that was unchanged through the years. In each election 386 representatives were elected to Parliament for a four-year cycle. Of these representatives, 152 were elected under proportional rule based on regional party lists, while 176 were elected directly in single-member districts, while 58 seats were allocated in a compensatory system to increase proportionality. The elections consisted of two rounds: in the first round, each voter cast a ballot for a party list and an individual candidate. If none of the individual candidates received 50% of the vote, a runoff election was held fourteen days later, where three candidates with the most votes were qualified to run and, additionally, any further candidate receiving at least 15% of the vote. If participation in the first round is below 50% of all eligible voters in a given district, both the list vote and the individual candidate vote is repeated fourteen days after the first round. In this case all individual candidates (rather than just the top three) remain in the race and the winner is determined according to the first-past-the-post principle.

Since this study uses three-way second-round races to analyze the determinants of strategic voting, first these races have to be identified. In the six general elections from 1990 to 2010 there were 818 individual candidate races (or about 77%) that were not decided in the first round. Of these, there was a repeated election (due to low turnout) in 41 cases (4%), while 777 cases were runoff elections. Table 1 summarizes information on all proper runoff elections from the period 1990-2010. In only five instances has a fourth (and never a fifth) candidate qualified for the runoff election (four of these occurred in the first democratic election in 1990). Slightly more than half of these races (403 or 52%) had exactly three contestants: They form the sample of this study.

Table 1. Runoff contests by general election years, 1990-2010

<table>
<thead>
<tr>
<th>Election year</th>
<th>Number of contestants</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1990</td>
<td>41</td>
<td>120</td>
</tr>
<tr>
<td>1994</td>
<td>12</td>
<td>161</td>
</tr>
<tr>
<td>1998</td>
<td>103</td>
<td>37</td>
</tr>
<tr>
<td>2002</td>
<td>124</td>
<td>7</td>
</tr>
<tr>
<td>2006</td>
<td>85</td>
<td>25</td>
</tr>
<tr>
<td>2010</td>
<td>4</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>369</td>
<td>403</td>
</tr>
</tbody>
</table>

Table 1 shows two notable tendencies that are closely related to strategic coordination in elections. First, the number of second-round races is decreasing in every election from the last since 1994. This is an indication of the fact that the consolidation of the party system (noted by Duch and Palmer (2002) based on different statistics from the first three Hungarian elections) continued through the period.

The second tendency relates to 369 races in which one of the three candidates chose not to run in the second-round. Mostly, these candidates endorsed one of the remaining ones. This may be viewed, in the terminology of Cox (1997), as an action of strategic coordination by the elites to avoid wasting votes. It is interesting to note that there were few instances of such coordination in the first two democratic elections (about 25% of the cases in 1990 and about 7% in 1994), while it occurred in the overwhelming majority of the cases in the next three elections (in 74% of the cases in 1998, 95% in 2002 and 77% in 2006) where alliances of left and right-leaning parties were formed.

2 The next general elections will be held under a new election law passed by Parliament in 2011.
formed to win elections and form governing coalitions. In 2010, with two new parties who cleared, for the first time, the 5% parliamentary hurdle, there were again few endorsements in the second round.

The incidence of third-candidate endorsements through time affects the sample of this study: almost 70% of the three-way second-round districts are from the first two democratic elections, and 2010 is the first election in 15 years where the majority of second-round districts featured three candidates. Since the 2010 election occurred in a more consolidated party system with voters having much more experience with the parties and the election system, it makes sense to first analyze the about 50 districts from this election before turning to the analysis of the whole sample in Section 5.

4. Strategic voting in the general election of 2010

The 53 three-way runoff contests in 2010 can, with the exception of two, be grouped into three types. In 26 districts the candidate of Jobbik was in third place behind the candidates Fidesz and the Socialists; in 16 districts the Socialist candidate was in third place behind the candidates of Fidesz and Jobbik; while in 9 districts the candidate of LMP was in third place behind the candidates of Fidesz and the Socialists.

Figure 1 shows the change in the vote share of third-place candidates in second-round races in 2010 as a function of the closeness of the race in the first round. The figure shows the scatter plot of 51 races with three fitted regression lines for the three race types separately.

Figure 1: Performance of third-place candidates as a function of the closeness of the race, 2010

Although the number of observations is not very large, the figure is suggestive that the performance of third-place candidates is positively affected by the difference between the first and second place candidates or, in other words, negatively affected by the closeness of the race. There are two observations that can be made. First, conditional on the closeness of the race, some third-place
candidates performed better than others relative to the first round. In particular, third-place Socialist (MSZP) candidates were nearly able to repeat their first-round result, while third-place candidates of LMP underperformed somewhat and third-place Jobbik candidates underperformed even more.

Second, and perhaps more interesting, the effect of the closeness of the race appears to affect the result of third-place candidates of all three parties similarly: if the race between the first and the second becomes closer by 10 percentage points, the expected result of the third-place candidate falls by 2 percentage points.

To be able to assess this apparent relationship more exactly we turn to regression analysis. Table 2 shows the results from variants of the main specification. The dependent variable in all specifications is the log of the second-round number of votes of candidate 3. In column (1) the explanatory variables are the log of the first-round number of votes of candidate 3, the difference, in percentage points, of the vote shares received by candidates 1 and 2 in the first round, and a constant. Column (2) adds the making-a-mark variable; while column (3) adds 'race-type' dummies (dummies indicating which party the third-place candidate belongs to). The same specification is reported in column (4), after the excluding the two 'atypical' districts from the sample.

Table 2: Determinants of the second-round performance of third-place candidates, 2010

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>(1) log(votes3_r2)</th>
<th>(2) log(votes3_r2)</th>
<th>(3) log(votes3_r2)</th>
<th>(4) log(votes3_r2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(votes3_r1)</td>
<td>1.409*** (0.105)</td>
<td>0.838*** (0.109)</td>
<td>1.025*** (0.085)</td>
<td>1.025*** (0.085)</td>
</tr>
<tr>
<td>DIFF_12 (%pts)</td>
<td>1.140** (0.438)</td>
<td>2.573*** (0.368)</td>
<td>2.188*** (0.287)</td>
<td>2.188*** (0.287)</td>
</tr>
<tr>
<td>DIFF_13 (%pts)</td>
<td>-3.167*** (0.441)</td>
<td>-2.097*** (0.375)</td>
<td>-2.097*** (0.375)</td>
<td></td>
</tr>
<tr>
<td>Race-type dummies</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.203*** (0.879)</td>
<td>1.261 (0.981)</td>
<td>-0.332 (0.745)</td>
<td>-0.653 (0.775)</td>
</tr>
<tr>
<td>Observations</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>51</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.799</td>
<td>0.902</td>
<td>0.954</td>
<td>0.952</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. The dependent variable in all specifications is the log of the number of second-round votes cast for the candidate in third place after the first round. Columns (1)-(3) include all three-way second-round races in 2010, while column (4) excludes two districts featuring independent candidates in the second round. Race types are defined by the identity of the third place candidate and the identity of the two leading parties (but not their order).

*** p<0.01, ** p<0.05, * p<0.1

The results reinforce that the closeness of the race affects the result candidate 3. The estimated parameter of the strategic-voting variable is about 1.1 in the first column, but increases to about 2.2 as the rest of the explanatory variables are introduced. Here, an estimated parameter of 2.2 means that if the difference between candidates 1 and 2 increases by ten percentage points, the number of votes received by candidate 3 in the second round increases by approximately 22 percent (not percentage points).

The estimated parameter of the log number of votes of candidate 3 in the first round (log_votes3_r1) is roughly about 1 in all specifications. This means that second-round results of
third-place candidates are proportional to the first-round results in the sample. The making-a-mark variable is quite stable across specifications, significant in each case, and of similar magnitude to the strategic-voting parameter.

5. Strategic voting in the whole period 1990-2010

In this section all instances of three-way runoff elections are analyzed from the six general elections between 1990 and 2010. About 70% of these races occurred in 1990 and 1994. In these elections, the number of candidates running were much higher, and the vote share total of the first three candidates much lower, than in later elections. This is why the scatter plot of these races does not reveal the presence of strategic voting as it was the case with the 2010 races (see Figure 2).

Figure 2: Performance of third-place candidates as a function of the closeness of the race, 1990-2010

In fact, the fitted regression line in Figure 2 shows a negative bivariate relationship between the distance of candidate 2 from candidate 1 and the change in the vote share of candidate 1. Table 3 shows the results from the regression analysis. While column (1) confirms that the bivariate relationship between the closeness of the race and the performance of candidate 3 contradicts the implications of strategic voting, the introduction of further explanatory variables makes strategic voting reappear.
Table 3: Determinants of the second-round performance of third-place candidates, 1990-2010

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>(1) log(votes3_r2)</th>
<th>(2) log(votes3_r2)</th>
<th>(3) log(votes3_r2)</th>
<th>(4) log(votes3_r2)</th>
<th>(5) log(votes3_r2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(votes3_r1)</td>
<td>1.212***</td>
<td>0.584***</td>
<td>0.767***</td>
<td>0.794***</td>
<td>0.764***</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.061)</td>
<td>(0.038)</td>
<td>(0.037)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>DIFF_12 (%pts)</td>
<td>-0.157</td>
<td>3.267***</td>
<td>1.405***</td>
<td>0.888***</td>
<td>0.828***</td>
</tr>
<tr>
<td></td>
<td>(0.326)</td>
<td>(0.316)</td>
<td>(0.200)</td>
<td>(0.192)</td>
<td>(0.201)</td>
</tr>
<tr>
<td>DIFF_13 (%pts)</td>
<td>-4.518***</td>
<td>-2.345***</td>
<td>-1.641***</td>
<td>-1.706***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.261)</td>
<td>(0.201)</td>
<td>(0.203)</td>
<td>(0.208)</td>
<td></td>
</tr>
<tr>
<td>Race-type dummies</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.744***</td>
<td>3.948***</td>
<td>2.274***</td>
<td>1.869***</td>
<td>2.127***</td>
</tr>
<tr>
<td></td>
<td>(0.537)</td>
<td>(0.522)</td>
<td>(0.327)</td>
<td>(0.322)</td>
<td>(0.328)</td>
</tr>
<tr>
<td>Observations</td>
<td>403</td>
<td>403</td>
<td>403</td>
<td>310</td>
<td>279</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.463</td>
<td>0.694</td>
<td>0.925</td>
<td>0.951</td>
<td>0.953</td>
</tr>
</tbody>
</table>

Notes: Standard errors in parentheses. The dependent variable in all specifications is the log of the number of second-round votes cast for the candidate in third place after the first round. Columns (1)-(3) include all three-way second-round races in 1990-2010; column (4) excludes race types of which there is less than 5; while column (5) excludes race types of which there is less than 10. Race types are defined by election year, the identity of the third place candidate, and the identity of the two leading parties (but not their order).

*** p<0.01, ** p<0.05, * p<0.1

The making-a-mark parameter is of the same order of magnitude as it was estimated on the 2010 sample, and is consistently statistically significant across specifications.

The magnitude of the strategic-voting parameter is about 3.3 when the the making-a-mark variable is included in column (2), while it is cut to about 1.4 when the race-type dummies are introduced in column (3). This is the theoretically soundest specification as the dummies control for the notion that the propensity of a group of voters to cast a strategic vote may depend on what party these voters support, but also on the year and on which parties are in first and second place. The coefficient means that if the race between the top two contenders becomes closer by 10 percentage points, the third-place candidate loses about 14% of his or her support.

Results of this full specification become weaker when race types are excluded of which there are less than five races (column (4)) or less than ten (column (5)). This suggests that voters in 'atypical' race types (for example voters supporting independent candidates and candidates of very small parties who are in third place) exhibit, in the sample, a stronger tendency of strategic voting than voters of third-place candidates in more frequent race types.

Altogether the evidence from the full sample gives support to the presence of strategic voting, although with a magnitude that is about one-half to two-thirds of that estimated in the 2010 races. This is consistent with the notion that voters in the first two democratic elections in Hungary were more concerned with establishing their preferred party as a legitimate alternative than by casting a strategic vote for their second preference. It is also possible that in the 1990 and 1994 election third-place candidates had a higher chance of winning because of the low concentration of the party landscape relative to later elections.
Conclusion

This paper proposes a method of identifying strategic voting in single-member dual-ballot (two-round) election systems. Three-way runoff elections from six general elections are analyzed from Hungary in the period 1990-2010. Most three-way runoff elections occurred in 1990 and 1994 before the major party alliances, that came to govern Hungary in a series of coalition governments, were stabilized. In the elections 1998 to 2006 most third-place candidates endorsed one of the leading ones. The stability of the party system was rocked in 2010 when two new parties became relevant in second-round contests; These parties did not endorse other candidates in the second round.

The statistical analysis found strong evidence of strategic voting both in 2010 separately, and in the whole sample of 403 races from 20 years. It also showed that the strategic motivation of voters of third-place candidates was stronger in 2010 than in earlier elections. This is consistent with the notion that in the early democratic elections of 1990 and 1994, as compared to 2010, Hungarian voters of third-place candidates were more motivated by either the prospect of winning their contests, or by giving a signal that their parties have firm support; and less motivated by prospect of deciding the race of the candidates in the first and second place.

References

Blais, André, Simon Labbé-St-Vincent, Jean-François Laslier, Nicolas Sauger, Karine Van der Straeten (2011): Vote choice in one round and two round elections: An experimental study. Political Research Quarterly 64 (September), 637-645.

